VICS

Vehicle Software &
Electronic Solutions

Building the Digital Thread
between MBSE and MBD to
Meet 1ISO26262 for

Embedded Software 8o

Authors: Joshua McCready (Ford), Hans Gangwar (Ford), Josh Kahn (MathWorks)

Vehicle

& Electronic
Solutions

Assessing 1SO026262 Part 6 compliance for new and existing Ford In House software developed with
Model Based Design software has demonstrated the need for additional best practices

Problem Statement

These best practices are needed to achieve connectivity to the System Engineering process and to
allow for traceability and thread pulling of SW development artifacts*

*System and software requirements, model and data dictionary, implementation, test cases

Vehicle

Summary of Gaps found in Assessing 15026262 Part 6 /_o VEGES oere

Solutions

The following pain points were identified and targeted:

* Architecture models and implementation models were maintained in separate tools resulting in a poor
connection between them

* Requirements were previously maintained in Microsoft Word with implicit linking to the Simulink
implementation models resulting in the need for manual traceability

* Change tracking/impact analysis in models was difficult because one file contained all the subsystems

* Traceability between requirements, models, and tests was maintained in a Microsoft Excel spreadsheet
resulting a labor-intensive process change management process

* Relationships between high-level requirements, implementation requirements, implementation, and test
cases were implicit making validation of high-level requirements difficult

. Vehicle
Software
Solution VAGES :dee
Solutions

* Adopted an Integrated MBSE — MBD workflow to better connect system and software design artifacts

. Created software functional architecture from required system functions via functional decomposition, allowing for focus on main SW function inputs and
outputs upfront

. Created software technical architecture that connects to system technical architecture and production model, allowing for nesting up and down the
System V

. Limited the duplication of sources of truth

. Used a requirements management tool enabling requirements being machine readable, have relationships between requirements, and traceability

to other System V artifacts

. Adopted a componentized modeling style (Model Reference and Reference Data Dictionary) enabling impact analyses upon changes and traceability

to other System V artifacts

. Continued use of Simulink Test to perform requirements-based SW V&V with machine readable requirements, enabling impact analyses upon

changes and traceability to other System V artifacts

Vehicle

Process Overview /—0 VAGES e
Solutions

Stakeholder Needs
System Requirements System Qualification
System Architecture System Integration
Software Requirements Software Qualification
Software Architecture Future?Work Software Integration Fuwre?work
Software Detailed Software Unit

Design Verification

Process Overview — Stakeholder Needs

Vehicle

& Electronic
Solutions

Stakeholder Needs

System Requirements

System Architecture

Software Requirements

Software Architecture

Software Detailed
Design

Stakeholder Needs

Organization-level requirements are captured as
Stakeholder Needs and Concept of Operations then
decomposed into the System Requirements.

Vehicle

Process Overview — System Requirements o \ACS e

Solutions

Stakeholder Needs

Structured System Requirements
System Requirements System requirements are maintained in a tool outside

MathWorks and split into three categories:
* Functional Safety Requirements

* Technical Safety Requirements

* System Functional Requirements

System Architecture

Software Requirements

Software Architecture

Software Detailed
Design

Vehicle

Process Overview — System Architecture o VRS sotvere

Solutions

Stakeholder Needs

Implementation of System Requirements
System Requirements The System Architectures are implemented in either an
outside tool or System Composer and split into a

Functional Architecture and a Technical Architecture.
System Architecture

System Suppc?rts: .
Software Requirements * Failure Mode Analysis,

Functional Safetv Goal
Architecture ST s,. _
* System Functional Requirements

Software Architecture IAIIocations
- System Supports:
Softwlz;re .Detalled Technical * Functional and Technical Safety
esign Architecture Requirements

* System Functional Requirements

Process Overview — Software Requirements

Stakeholder Needs

System Requirements

System Architecture

Software Requirements

Software Architecture

Software Detailed
Design

Structured Software Requirements

The software requirements are decomposed from the
System Requirements and maintained in an outside tool.
Then, they are imported into Simulink Requirements via
ReqlF* to establish traceability within the MathWorks
toolchain.

All software requirements can be considered as Software
Safety Requirements, some simply being QM if they
support no Technical Safety Requirement.

(% Requirements Editar O
REQUIREMENTS 2
- =) B
0 — & save =] Ef Delete) = c % "—L'%D 4
£ ol = = - =1 R dl &
& Impo £ | Promote Requiremer -
New Open Add = d dd Show Show Search | Traceability Traceability Model Testing | Export
Requiremen t Set Requirement + Link v & ||Requirements | Links [~ Matrix Diagram Dashboard -
FILE QUIREM! KS VIEW ANALYSIS
® Reguirement: #2
Details
v [controlleriSoftwareRequirements This requirement set was buiilt in collaboration with Ford Motor Cf |+ properties ~
v E1
Type: Informational ™
L1 ronamous vehicle ECU
_ Index: L1
E 12 stem Inputs to the Brake Cont| | oo | 2 ‘
v E 13
summary: [Introduction
v B 131 ur functions consisting of Input P
B 1311 Description Rationale
SO B EJus 7 1 m[s=
B 13121 Brake Controls definition for autonomous vehicle
ECU
B 13122
E 13123
B 1313
v E 132 The:
B 1321 The
v B 133 This
B 1331 Software Configuration Requirements Confi t be edited by the calibrators during
B 1332 Software Calibration Requirements Calibration Parameters are dynamic and can be edited by the call
3| Keywords: v

*Requirements Interchange Format

Vehicle

Process Overview — Software Architecture o VEES software

Solutions

Stakeholder Needs Software Architecture Fits Requirements Structure
The Software Architecture is built in System Composer and
matches the structure of the Software Requirements.

System Requirements

Artifacts can be shared between the Software Architecture
and the detailed production software model such as

System Architecture interfaces between different SW components.

Software Requirements

*.
Software Suppgrts ' _
* Failure Mode Analysis

Functional
Software Architecture Architecture* * Safety Goals
*Future Work

IAIIocations

Software Detailed

Design Software Supports:

\ Technical * Technical Safety Requirements
Architecture * Software Safety Requirements

Process Overview — Software Requirements and Architecture /—0 VAGES e

Vehicle

& Electronic
Solutions

Stakeholder Needs

Systemintegration

Controller1

> ecuVoltageRaw

> DID1 motorCurrentRaw >

> DID2 brakePressureRaw [>

> brakePedalPosition

Software Architecture Fits Requirements Structure
The Software Architecture is built in System Composer and
matches the structure of the Software Requirements.

Artifacts can be shared between the Software Architecture
and the detailed production software model such as
interfaces between different SW components.

Software o
) Supports™:
Functional . .
) N * Failure Mode Analysis
Architecture

» Safety Goals
I Allocations *Future Work

Software Supports:
Technical e Technical Safety Requirements
Architecture * Software Safety Requirements

Process Overview — Software Detailed Design — 3 Pillars

Controller1

/—0\&5

b= HllecuvoltageRaw

b= HEDIC

> HEDIDZ

I+ llbrakePedalPositian)

Inputs

ecuVoliageRaw[h
[allnf]
DDz

brakePedalPosition|

Inputs
[ecu\oltageRaw

[» DID1

Inputs [»

[~ DID3

[= brakePedalPosition

Main
Verify Power Supply

b= Imputs
power_state [

[+ ReadDataFromMemory

ReadDataFromMemory

[» power_state

ReadDataFromMemory [
= Imputs

ECU Command

[power_state

ECUCommand [»

[» ReadDataFromMamaory

Outputs

Output Processing

[+ ECUCommand

miotorCurrentaw -

brakePressureRaw [-

HmotorCurantRaw

lbrakePressureRaw

> DID1

> DID2

brakePressureRaw [>

> brakePedalPosition

Functional
Architecture®

IAIIocations

Software
Technical
Architecture

Vehicle

motorCurrentRaw([- >

brakePressureRaw[- >

Software
& Electronic
Solutions

1d

‘e

Vehicle

Process Overview — Software Detailed Design — Native Requirement Linkage /—o VAGES soere

Solutions

Controller1
foltageRaw Inputs Id
ecuVoliageRawlp— > ecuVollageRaw \l’enfy Power Supply
ECU Command Output Processing motorCurrentRaw [[
DDl DIDA
Inputs [» b= Imputs
Doz [DID3
poawer state [» [power_state motorCurrentRaw [+ —@motorCurantRaw
brakePedalFositionfi—(- brakePedalPosition I» ReadDataFromMemol¥ ECUCommand [> I ECUCommand
S [+ ReadDataFromMemory brakePressureRaw [+ —#llbrakePressureRaw Fe
ReadDataFromMemory
> HEDIDZ
[» power_state
brakePressureRaw - [
RegdDataFromMemory -
= Imputs
rakePedalPasition
- -® 1

- ——

-

~ (&) Controlier1SoftwareRequirements This requirement set was builtin collaboration with Ford Motor Company and shall not bl)

v E1 Ford Brake Controller Specification Imported from Polarion |)
E 11 Introduction Brake Controls definition for autonomous vehicle ECU

B 12 System Inputs Refer to the interface matrx for System Inputs to the Brake Control System between th. (),

v E 13 Software Safety Requirements Spec Imported Directly from Polarion a)

v B 131 Software Functional Requirements The software Is divided into four functions consisting of Input Processing, two main fun. NIl)

B 1311 Input Processing []

v B 1312 Main Function | N

B 13121 Function1: Read Data from Memary “The read data function shall read the data from memory and set memory_vaiid of tyoe NIl)

B 13122 Function2: Verify Pawer Supply The verify power supply function shall monitor the power supply and set power_stat o ([l

B 13123 Function 3: ECU Command The ECU Command function shall generate motor current and brake pressure based on NIl)

[]

B 1313 Output Processing

Vehicle

Process Overview — Software Detailed Design — Model Reference /—o VAGES Sofivere
Solutions

Controller1

I HllecuVoitageRaw

I+ llbrakePedalPositian)

Inputs Main Outputs

Inputs
Verify Power Supply

ecuVoliageRawlp— > ecuVollageRaw

DIDige DIDH ECU Command Output Processing matorCurrentRaw i B
- >
Inputs [» b= Imputs
Doz [DID3
power_state [» [power_state motorCurrentRaw &+ —@lmotorCurrentRaw
brakePedalPosiionf— [+ brakePedalPosition [+ ReadDataFromMemory ECUCommand [[» ECUCommand
[» ReadDataFromMamaory brakePressureRaw [+ —llbrakePressureRaw
ReadDataFromMemory

[» power_state
brakePressureRaw - [
ReadDataFromMemory [

= Imputs

Software Functional Units are Linked as Behaviors

The software is designed as functional units rather than one
Software Architecture large model, facilitating work-split, piece-wise integration,

and impact analysis through Model Reference. These units

Software Detailed exists as separate .slx files and are collected into a parent .slx

uint8 [1x2] .
-me? U K Qy=Qu>>0
Mtr1x2 Y uint16 » Wy =Vut 200 >
P sig1 Ey=Eu ShifBit1
lII One ! ATrat Bitwise
ShiftArithmetic1 OR S M%-
i uint1fg:
ig2Byte
i b) Qy=Qu>>1
Y uint16 Vy = Vu* 241 >
\Il \dx1 Loc2 Sig2 Ey=Eu ShifBit2
Two g

ShiftArithmetic =

Process Overview — Software Unit Verification

/ m

Software Unit Verification Underway

Functional software requirements are in the process
of being linked to Simulink Test Cases for verification
and coverage analysis.

\mp\e\”f\e“,tS Functional Unit
(Reference Model)
Functional
Requirement Tests
Test Case

/

Verifies

Future Work

5

System Qualification

System Integration

Software Qualification

. Future Work
Software Integratlon 4

Software Unit
Verification

Vehicle
Software

& Electronic
Solutions

Process Overview — Ongoing Work

/—o\/SGS

Next Steps

Continually feedback Software Detailed Design to
Software Architecture

Create Design Verification Methods
Link test cases to Design Verification Methods

Create the Software Integration and Qualification
Test Suites

Identify dependencies of software integration and
qualification testing and how to establish b
traceability across the project artifacts

System Qualification

System Integration

Software Qualification

. Future Work
Software Integratlon 4

Develop System Integration and Qualification Tests

Integrate Software Architecture with System
Architecture

Software Unit
Verification

Vehicle
Software

& Electronic
Solutions

Analyzing Traceability

Vehicle

Software
& Electronic
Solutions

Thread-Pulling Using Traceability Diagram
The Traceability Diagram feature of Simulink Requirements (introduced in R2021b) is planned to be used

for thread-pulling activities

H contratiert

Implethents

| Ford Brake Centroller Specification

Vienfies

= Bystem Test1

Legend

mmsm P Simulink Models and Libraries
=== v Requirements

=1 Simulink Test

Related

1=/ Imput Procassing

Related

Related

Software Functional Requirements

Vernfies

=1 5W Qual Test 1

o

=1 Main Function

Related

[Ls]
= 5W Integ Test 2

= Qutput Processing

=1 5W Intep Test 4

Verfies

mp emem'j
Input Processing

= Functiond: Read Data from Mamory

Refated fo

Related

fo = Funetion2: Verify Power Supply

Related fo

Function 3: ECU Command

Implement
L‘ Qutput Processing

Verifies

5W Inten Test 2

I Read Data From Memory

MPIEMERTS

Vermes

=/ Fune 1 Unit Test

| Werify Power Supply
Implements

Verifies
=/ Fune 2 Unit Test

TlEecu command

Implemenis

Verifies
= Fune 3 Unit Test

Vehicle

Conclusion /—O VAGES e
Solutions

* Adopting a Model Reference and Reference Data dictionary modeling style enables easier
impact analysis and makes generated code easier to read when paired with use of non-virtual
buses

* Thread pulling of Technical Safety Requirements is done automatically with Traceability Diagrams
in Simulink Requirements/Views in System Composer, enabling review that the Technical Safety
Requirements are met and fully validated

* Using a requirements management tool enabled machine readable requirements allowing for
greatly improved linking of artifacts

* Creating a software technical architecture model helped develop software implementation
requirements and key artifacts can be shared between it and a production model that
implements the detailed software design

* Applying a system engineering approach to create a software functional architecture improves
ability for up front design

Vehicle

Linked Library versus Model Reference MBD Comparison /_o VAGES Sofivere

Solutions

Linked Library File Structure Model Reference File Structure
Main.slx Main.slx
Main_functions.slx (linked library) Submain_functionl.slx
Reuse_units.slx (linked library) unit_functionl.slx
Main.sldd unit_function2.slx
Calibration.sldd (imported from header file) unit_function3.slx

Submain_function2.slx >
Submain_function3.slx >
Submain_function4.slx >
Submain_function5.slx >

Main.sldd
Config.sldd (imported from header file)

Calibration.sldd (imported from header file)

NonVirtualBus.sldd
(creates bus objects that appear in generated code)

Vehicle

Thank You /—o VAGES (it
Solutions

Thank you for joining us today.

Please direct any follow-up questions to:

Joshua McCready
imccrea8@ford.com

Josh Kahn
joshkahn@mathworks.com

mailto:jmccrea8@ford.com
mailto:joshkahn@mathworks.com

