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OverviewOverview

• In recent years in the commercial or government space businesses, 
there has been a movement away from RF analog payloads for pure 
“bent-pipe,” or “transponder” applications.

• Up until even the recent past, these payloads have been fixed 
band plan, implemented with all analog electronics.

• Today’s customers are looking towards all digital payloads that utilize 
digital signal processing (DSP) to accomplish the same goals while 
providing enhanced mission capability and flexibility.  

Location A Location B

“Bent Pipe” transponder satellite at 
Geostationary Orbit (35,786 km)
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The ChallengeThe Challenge
• Design a Modular Agile digital Payload (MAP) to take the place of 
the traditional analog communications satellite payload.
• The payload must have the following characteristics:

• Be spaceworthy; i.e., highly reliable, and highly tolerant of 
radiation effects.
• Be reconfigurable; that is, able to be altered on-orbit for different 
functions as business conditions change.  
• Be highly flexible and agile with respect to bandplan and 
channelization, so that bandwidth for users can be assigned “on-
demand,” and spectrum can be arbitrarily allocated anywhere 
within the full bandwidth of a beam.
• Be modular, and re-useable for many different programs, all with 
different requirements.
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The Early DaysThe Early Days

• Early on in the program, it was a complete unknown what this system 
would look like.
• Requirements from numerous programs were flying around, and they 
were often incompatible with each other, particular their bandplans:

• AMC: 4, 8, 36, and 72 MHz wide channels.
• MMSI: 24 and 32 MHz wide channels.
• JSAT: 27 MHz wide channels.
• AsiaSAT: 8 and 36 MHZ wide channels.
• and many others…

• These unknown requirements not only made it very difficult to design 
the hardware, but put a tremendous amount of work on the DSP
engineer designing algorithms.

• As the lead DSP engineer, I found myself re-writing the algorithms 
almost daily, in order to demonstrate the various bandplans.
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The Hardware SolutionThe Hardware Solution

Digital Channelizer Unit (DCU):
• A modular, space-worthy payload composed of the following 
building blocks:
• CIO – Channelizer I/O Module

• Composed of 5 Field Programmable Gate Arrays (FPGAs), 
three of which are voted for extremely high reliability.
• Handles all of the signal processing, real-time.

• DRM – Data Routing Module
• Multi-gigabit, non-blocking data routing in rad tolerant FPGAs.

• RIO – RF Input/Output Modules
• Power Converters
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System Level DCU ArchitectureSystem Level DCU Architecture
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DCU on MAP SpacecraftDCU on MAP Spacecraft

MAP MAP –– type type 
SpacecraftSpacecraft

Digital Channelizer Unit Digital Channelizer Unit 
((DCUDCU)) CIOCIO DRMDRM

Channelization in CIOChannelization in CIO

Active Arrays
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DCU AlgorithmDCU Algorithm
Algorithm Overview

•• The The DCU algorithm DCU algorithm is defined as the mathematical manipulation (via fixed point is defined as the mathematical manipulation (via fixed point 
arithmetic implemented in the DCU FPGAs) of data samples to perfarithmetic implemented in the DCU FPGAs) of data samples to perform the following orm the following 
tasks:tasks:

–– Process a total digitized analog frequency bandwidth of 500 MHz Process a total digitized analog frequency bandwidth of 500 MHz (which may or (which may or 
may not be contiguous).may not be contiguous).

–– Break up this bandwidth into narrowband Break up this bandwidth into narrowband ““subchannelssubchannels”” (i.e., (i.e., ““channelizechannelize””))
–– Have the ability to reHave the ability to re--arrange the subchannels in any arbitrary order.arrange the subchannels in any arbitrary order.
–– Have the ability to alter the subchannel gains arbitrarily, in mHave the ability to alter the subchannel gains arbitrarily, in multiple modes.ultiple modes.
–– Have the ability to measure and report the average and peak signHave the ability to measure and report the average and peak signal power level at al power level at 

the input and output of the DCU, as well as at the subchannel lethe input and output of the DCU, as well as at the subchannel level.vel.
–– Recombine the subchannels (i.e., "reconstruct" them) into a compRecombine the subchannels (i.e., "reconstruct" them) into a composite bandwidth of osite bandwidth of 

the same size as the input.the same size as the input.
–– Transform the recombined spectrum so that it can be converted baTransform the recombined spectrum so that it can be converted back into the ck into the 

analog domain for further processing.analog domain for further processing.
–– Be arbitrarily reconfigurable in signal processing function.Be arbitrarily reconfigurable in signal processing function.

•• The functional data flow for a 4 port DCU is depicted here:The functional data flow for a 4 port DCU is depicted here:
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Matlab Algorithmic Model
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Two - Sided Input Signal Spectrum After Sampling (Possibly Aliased Spectrum)
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Passband Output Spectrum
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• A floating point model of the DCU 
algorithm has been developed in the 
Matlab environment.

• This model is designed to be very
flexible, allowing the user to specify a 
wide range of arguments.

• This makes the Matlab model useful for functionally 
verifying various channelization schemes quickly and 
efficiently.  The user simply needs to pick the right 
parameters (filter coefficients, FFT length, 
decimation/interpolation factors), etc. 

• The DCU algorithm function can be 
called from the Matlab command line, or 
as part of a script file.

• This function is composed of lower level 
functions that do arbitrary channelization 
and reconstruction.

routing_table, 
gain_table

Route,

Gain
Route,

Gain

DCU AlgorithmDCU Algorithm



10

Simulink Structural Model

Simulink Model

FPGA SynDSP Blockset  Model

Simulink to Hardware Development

HDL Synthesis

The next step in the development was 
to build a structural model of the DCU 
algorithm in the Simulink environment.

• This model is designed to test implementation 
assumptions about the DCU Algorithm and 
provide a model that is very similar to what the 
real gateware will look like.

Once the Simulink model works 
properly, another Simulink model is 
developed by replacing the blocks with 
components from another vendor’s 
blockset in order to generate VHDL.

Simulink Block Diagram

DCU AlgorithmDCU Algorithm
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DCU AlgorithmDCU Algorithm
Model Verification
Once VHDL for the various pieces of the DCU algorithm have been developed, tested in 
the Simulink environment, and stitched together in the Mentor HDL environment, the 
next step is functional simulation and verification.

For this task, we choose the EDA Simulator Link MQ tool (formerly known as “Link for 
Modelsim”).  

• This tool allows us to make use of all of the signal generation and visualization tools available to us in the 
Simulink environment, while still simulating the VHDL at the bit level.

• In fact, we can use the exact same test-benches for VHDL test and verification that we used during the 
development phase.

• This tool was immensely helpful in finding bugs in the code that were not apparent in the Simulink 
environment alone.

Pull the generated code 
together with HDL Designer

Bring into Simulink 
Environment Simulate with ModelSim
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ConclusionConclusion
• Using advanced tools and methods, we took a program from concept 
through functional, space-worthy hardware in about 1½ years.

• Estimated reduction in development time 8 months over 
traditional (hand coding) methods.

• Process flow and tools:
• Concept – Matlab (Signal Processing Toolbox)
• Structural Model – Simulink (Signal Processing and 
Communications Blockset)
• VHDL Model – SynDSP Blockset in Simulink Environment
• VHDL Code Integration – HDL Designer
• Functional Verification and Degugging - EDA Simulator Link 
MQ tool in Simulink Environment




