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A Model Checking Example 
Solving Sudoku Using Simulink Design Verifier 

 

AB S T R A CT .  This paper presents an easy-to-understand 
application of formal methods—specifically, model checking. 
Through an example based on the popular game Sudoku, I 
demonstrate the power and simplicity of this technology as 
implemented within Simulink®—a development environment 
for Model-Based Design. The overarching theme to consider is 
an analogy of the game to real-world constraint problems. The 
intent is to show a transition of the technology to real-world 
engineering problems and how model checking can be used in a 
full-scale system development process.   
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A MODEL CHECKING EXAMPLE – SOLVING SUDOKU 
USING SIMULINK DESIGN VERIFIER 
By Walter A. Storm, Lockheed Martin Aeronautics Company 

AB S T R A CT .  This paper presents an easy-to-understand application of formal methods—
specifically, model checking. Through an example based on the popular game Sudoku, I 
demonstrate the power and simplicity of this technology as implemented within 
Simulink®—a development environment for Model-Based Design. The overarching 
theme to consider is an analogy of the game to real-world constraint problems.  

INTRODUCTION 
Sudoku is a logic-based number-placement puzzle. The objective is to populate a 9x9 
grid so that each column, row, and 3x3 box contains a single instance of the digits 1-9. 
The game starts with a partially completed grid, and the solution to the puzzle is the 
arrangement of digits that meet the single-instance criteria.   
The Sudoku grid is analogous to the complex finite state machines (often implemented 
as hybrid control automata) that are responsible for executing the modes and behaviors 
of emerging software systems.  As the grid is populated, the temporary switching and 
storing of digits is representative of the various states and modes that the system can 
enter at any given time.  The alteration of the grid is a result of the environment in 
which the system operates. 

The strategy behind using a model checker to solve a Sudoku puzzle is this: formulate a 
logical proposition that suggests, given an initial state, no cases exist that meet all 
Sudoku requirements.  The resultant counterexample is a solution to the puzzle. 

FORMALIZING THE REQUIREMENTS 
Our approach to the Sudoku example is to first formalize the requirements of the game 
as a graphical model in Simulink (Figure 1).  This formalization consists of an initial board 
and an input vector that represents the puzzle’s environment—essentially, all the blank 
spaces to which a digit can be assigned. 

 

FIGURE 1 - MODEL OF SUDOKU REQUIREMENTS. 
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The initial board is blended with the environment (the In1 port) to produce a resultant 
state—the test board.  The resultant state is checked for valid rows, columns, and 3x3 
boxes.  If all three conditions are met, then the given state is a valid solution to the 
Sudoku.  The P block is a formal property (or logical proposition) that claims the output 
of the AND block is false for all possible cases. 

FORMALLY DEFINING VALID ROWS, COLUMNS, AND BOXES 
Each row, column, and box is 
passed through a Valid Set 
subsystem that simply checks 
for a single instance of the 
digits 1-9 in a set.  This is done 
by extracting a particular row, 
column, or box from the test 
board (Figure 2).  

This process is analogous to 
graphically representing the 
valid states of a system relative 
to the environment in which 
the system operates.  For 
example, a Valid Set for an 
autonomous landing sequence 
would include an explicit 
requirement that the landing 
gear is down. 

Note that there is no attempt 
here to enumerate or anticipate 
the potential states and modes of the system as it is excited through environmental 
manipulation—only the requirements of the system are graphically defined.  That is, we 
are not implementing any tricks or techniques that may be particular to Sudoku 
solvers—we are defining just the requirements of the game in a formal, structured way. 

This process of formally defining system requirements is an entirely different paradigm 
from that of traditional testing. Through propositional logic, one does not attempt to 
define specific input conditions and enumerate the expected output—rather, the 
objective is to define specific properties of the system output that must hold throughout 
all possible input conditions. 

  

FIGURE 2 - FORMALLY DEFINING VALID ROWS. 
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RUNNING THE MODEL CHECKER 
The underlying proof system in Simulink Design Verifier™ is the Prover Plug-In® from 
Prover Technology.  This engine is built upon Gunnar Stålmarck’s patented proof 
procedure for propositional logic 1

 

,a technique based on efficient use of Boolean 
Satisfiability.  Understanding the theory and mechanics of this technology involves a 
solid background in computer science and demands a good understanding of proof 
systems in general; however, through Simulink Design Verifier the ultimate 
implementation of the technique is boiled down to a single mouse click ( Figure 3). 

FIGURE 3 - SIMULINK DESIGN VERIFIER IMPLEMENTATION OF THE PROVER PLUG-IN. 

Once invoked, the model checker symbolically explores the entire state-space of the 
system in search of a violation to the logical proposition (i.e. property).  If a violation of 
the property is 
identified, the model 
checker returns a 
counterexample that 
enumerates all the 
system states leading 
up to the violation—
in essence, a test case 
(Figure 4). 

This violation, or 
counterexample, is representative of what is commonly referred to as a sneak circuit, or 
an overall bad day.  The model checker was given a logical proposition that this 

                                                                 
1 M. Sheeran and  G. Stålmarck, "A tutorial on Stålmarck's proof procedure for 
propositional logic ," Proceedings of the 2nd Intl. Conf. on Formal Methods in Computer-
Aided Design, FMCAD'98, Palo Alto, CA, USA, 4--6 Nov 1998. 

FIGURE 4 - A VIOLATION OF THE SUDOKU PROPERTY. 
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combination of states shall never occur—a proposition that turned out to be false.  In 
this example, the violation is actually the solution to the Sudoku. 

THE COUNTEREXAMPLE 
A counterexample is a frame-by-frame account of the values assigned to the specific 
variables responsible for falsifying a proof objective. In essence, it is a test case that is 
known to violate the requirement.  The implementation of the counterexample in 
Simulink Design Verifier is through an HTML report.  The counterexample for the Sudoku 
example is presented in Figure 5. 

 

FIGURE 5 - SUDOKU COUNTEREXAMPLE FROM SIMULINK DESIGN VERIFIER 

Notice that the property was violated in the initial time step.  If the graphical 
requirements had any state information or history, or if the logical proposition had 
inherent temporal connectives, then there would be a sequence of time steps involved 
in the counterexample—the formalization of a chess match, for example.   

Note also that the counterexample shown in Figure 5 is not as clear as the interpretation 
shown in Figure 4.  Due to the symbolic representation of the system within the proof 
engine, the input values of the system are able to 
assume any possible value unless specifically 
constrained.  Therefore, some interpretation is 
needed to fully understand the counterexample.  
In this instance, the In1 values must be blended 
with the initial board to produce a meaningful 
interpretation (Figure 6). 

Let B:= Initial Board Value 
Result=IF(B=0,IF(In1>=9,9,IF(In1<=1,1,In1)), B) 

  
FIGURE 6 – OUTPUT INTERPRETATION. 
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FIXING THE PROBLEM 
When faced with a counterexample, one must decide on a course of corrective action. 
The first step is to verify that the counterexample is, in fact, a real system problem.  In 
the Sudoku example, perhaps the sequence in the counterexample has already been 
identified as a possible outcome (i.e. a cohort may have solved the puzzle weeks ago but 
never documented the results).  Fair enough—simply iterate on the formal 
requirements, add the known solution as an environmental assumption, and run the 
model checker again (Figures 7 and 8). 

 

FIGURE 7 – DOCUMENTING A KNOWN SOLUTION AS AN ADDITIONAL CONSTRAINT. 

With the known solution as an 
additional constraint, the property is 
now proven valid—meaning that no 
additional cases meet the constraints 
of the formal requirements. Therefore, 
the unique solution to this Sudoku is 
now formally documented in the 
model. 

Had another solution existed, the 
analysis process would repeat,building 
additional confidence in the design and 
requirements. 

 

 

 

 FIGURE 8 - A VALID PROPERTY. 
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CONCLUSION 
This example illustrates the power, flexibility, and simplicity of emerging formal 
verification techniques.  The fact that this process could accompany early design 
activities means that the problems identified are much easier and less expensive to fix 
than they would have been if caught in the lab or the field.   

Model checking is not a replacement for testing, and not all problems can be formalized. 
There are, however, many areas where this technology is both applicable and highly 
beneficial--specifically, verifying the state and mode transitions of hybrid control 
automata, complex switching and Boolean mode logic (finite-state machines), and 
solving many constraint problems (such as the Sudoku example).  

I believe that many disciplines of systems modeling and development can benefit from 
this technology, and I encourage you to consider how model checking can be used in 
your environment. 
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