
Copyright © 2009 – Lockheed Martin Corporation.

A Model Checking Example
Solving Sudoku Using Simulink Design Verifier

AB S T R A CT . This paper presents an easy-to-understand
application of formal methods—specifically, model checking.
Through an example based on the popular game Sudoku, I
demonstrate the power and simplicity of this technology as
implemented within Simulink®—a development environment
for Model-Based Design. The overarching theme to consider is
an analogy of the game to real-world constraint problems. The
intent is to show a transition of the technology to real-world
engineering problems and how model checking can be used in a
full-scale system development process.

DISTRIBUTION STATEMENT A – Approved for Public Release. Distribution is unlimited.
 Ref: LM Aero PIRA AER200910006

Page | 2

A MODEL CHECKING EXAMPLE – SOLVING SUDOKU
USING SIMULINK DESIGN VERIFIER
By Walter A. Storm, Lockheed Martin Aeronautics Company

AB S T R A CT . This paper presents an easy-to-understand application of formal methods—
specifically, model checking. Through an example based on the popular game Sudoku, I
demonstrate the power and simplicity of this technology as implemented within
Simulink®—a development environment for Model-Based Design. The overarching
theme to consider is an analogy of the game to real-world constraint problems.

INTRODUCTION
Sudoku is a logic-based number-placement puzzle. The objective is to populate a 9x9
grid so that each column, row, and 3x3 box contains a single instance of the digits 1-9.
The game starts with a partially completed grid, and the solution to the puzzle is the
arrangement of digits that meet the single-instance criteria.
The Sudoku grid is analogous to the complex finite state machines (often implemented
as hybrid control automata) that are responsible for executing the modes and behaviors
of emerging software systems. As the grid is populated, the temporary switching and
storing of digits is representative of the various states and modes that the system can
enter at any given time. The alteration of the grid is a result of the environment in
which the system operates.

The strategy behind using a model checker to solve a Sudoku puzzle is this: formulate a
logical proposition that suggests, given an initial state, no cases exist that meet all
Sudoku requirements. The resultant counterexample is a solution to the puzzle.

FORMALIZING THE REQUIREMENTS
Our approach to the Sudoku example is to first formalize the requirements of the game
as a graphical model in Simulink (Figure 1). This formalization consists of an initial board
and an input vector that represents the puzzle’s environment—essentially, all the blank
spaces to which a digit can be assigned.

FIGURE 1 - MODEL OF SUDOKU REQUIREMENTS.

mailto:walter.a.storm@lmco.com�

Page | 3

The initial board is blended with the environment (the In1 port) to produce a resultant
state—the test board. The resultant state is checked for valid rows, columns, and 3x3
boxes. If all three conditions are met, then the given state is a valid solution to the
Sudoku. The P block is a formal property (or logical proposition) that claims the output
of the AND block is false for all possible cases.

FORMALLY DEFINING VALID ROWS, COLUMNS, AND BOXES
Each row, column, and box is
passed through a Valid Set
subsystem that simply checks
for a single instance of the
digits 1-9 in a set. This is done
by extracting a particular row,
column, or box from the test
board (Figure 2).

This process is analogous to
graphically representing the
valid states of a system relative
to the environment in which
the system operates. For
example, a Valid Set for an
autonomous landing sequence
would include an explicit
requirement that the landing
gear is down.

Note that there is no attempt
here to enumerate or anticipate
the potential states and modes of the system as it is excited through environmental
manipulation—only the requirements of the system are graphically defined. That is, we
are not implementing any tricks or techniques that may be particular to Sudoku
solvers—we are defining just the requirements of the game in a formal, structured way.

This process of formally defining system requirements is an entirely different paradigm
from that of traditional testing. Through propositional logic, one does not attempt to
define specific input conditions and enumerate the expected output—rather, the
objective is to define specific properties of the system output that must hold throughout
all possible input conditions.

FIGURE 2 - FORMALLY DEFINING VALID ROWS.

Page | 4

RUNNING THE MODEL CHECKER
The underlying proof system in Simulink Design Verifier™ is the Prover Plug-In® from
Prover Technology. This engine is built upon Gunnar Stålmarck’s patented proof
procedure for propositional logic 1

,a technique based on efficient use of Boolean
Satisfiability. Understanding the theory and mechanics of this technology involves a
solid background in computer science and demands a good understanding of proof
systems in general; however, through Simulink Design Verifier the ultimate
implementation of the technique is boiled down to a single mouse click (Figure 3).

FIGURE 3 - SIMULINK DESIGN VERIFIER IMPLEMENTATION OF THE PROVER PLUG-IN.

Once invoked, the model checker symbolically explores the entire state-space of the
system in search of a violation to the logical proposition (i.e. property). If a violation of
the property is
identified, the model
checker returns a
counterexample that
enumerates all the
system states leading
up to the violation—
in essence, a test case
(Figure 4).

This violation, or
counterexample, is representative of what is commonly referred to as a sneak circuit, or
an overall bad day. The model checker was given a logical proposition that this

1 M. Sheeran and G. Stålmarck, "A tutorial on Stålmarck's proof procedure for
propositional logic ," Proceedings of the 2nd Intl. Conf. on Formal Methods in Computer-
Aided Design, FMCAD'98, Palo Alto, CA, USA, 4--6 Nov 1998.

FIGURE 4 - A VIOLATION OF THE SUDOKU PROPERTY.

Page | 5

combination of states shall never occur—a proposition that turned out to be false. In
this example, the violation is actually the solution to the Sudoku.

THE COUNTEREXAMPLE
A counterexample is a frame-by-frame account of the values assigned to the specific
variables responsible for falsifying a proof objective. In essence, it is a test case that is
known to violate the requirement. The implementation of the counterexample in
Simulink Design Verifier is through an HTML report. The counterexample for the Sudoku
example is presented in Figure 5.

FIGURE 5 - SUDOKU COUNTEREXAMPLE FROM SIMULINK DESIGN VERIFIER

Notice that the property was violated in the initial time step. If the graphical
requirements had any state information or history, or if the logical proposition had
inherent temporal connectives, then there would be a sequence of time steps involved
in the counterexample—the formalization of a chess match, for example.

Note also that the counterexample shown in Figure 5 is not as clear as the interpretation
shown in Figure 4. Due to the symbolic representation of the system within the proof
engine, the input values of the system are able to
assume any possible value unless specifically
constrained. Therefore, some interpretation is
needed to fully understand the counterexample.
In this instance, the In1 values must be blended
with the initial board to produce a meaningful
interpretation (Figure 6).

Let B:= Initial Board Value
Result=IF(B=0,IF(In1>=9,9,IF(In1<=1,1,In1)), B)

FIGURE 6 – OUTPUT INTERPRETATION.

Page | 6

FIXING THE PROBLEM
When faced with a counterexample, one must decide on a course of corrective action.
The first step is to verify that the counterexample is, in fact, a real system problem. In
the Sudoku example, perhaps the sequence in the counterexample has already been
identified as a possible outcome (i.e. a cohort may have solved the puzzle weeks ago but
never documented the results). Fair enough—simply iterate on the formal
requirements, add the known solution as an environmental assumption, and run the
model checker again (Figures 7 and 8).

FIGURE 7 – DOCUMENTING A KNOWN SOLUTION AS AN ADDITIONAL CONSTRAINT.

With the known solution as an
additional constraint, the property is
now proven valid—meaning that no
additional cases meet the constraints
of the formal requirements. Therefore,
the unique solution to this Sudoku is
now formally documented in the
model.

Had another solution existed, the
analysis process would repeat,building
additional confidence in the design and
requirements.

 FIGURE 8 - A VALID PROPERTY.

Page | 7

CONCLUSION
This example illustrates the power, flexibility, and simplicity of emerging formal
verification techniques. The fact that this process could accompany early design
activities means that the problems identified are much easier and less expensive to fix
than they would have been if caught in the lab or the field.

Model checking is not a replacement for testing, and not all problems can be formalized.
There are, however, many areas where this technology is both applicable and highly
beneficial--specifically, verifying the state and mode transitions of hybrid control
automata, complex switching and Boolean mode logic (finite-state machines), and
solving many constraint problems (such as the Sudoku example).

I believe that many disciplines of systems modeling and development can benefit from
this technology, and I encourage you to consider how model checking can be used in
your environment.

91880v00 8/10

	A Model Checking Example – Solving Sudoku Using Simulink Design Verifier
	Formalizing the Requirements
	Formally Defining Valid Rows, Columns, and Boxes

	Running the Model Checker
	The Counterexample
	Fixing the Problem
	Conclusion

