
T he primary objective of MCC, the new MA T L A B
compiler, is to make MA T L A B programs run faster.
Without the compiler, MA T L A B is an interpreted

computing environment with dynamic storage allocation.
Compiling programs eliminates the interpretive overhead and,
more importantly, provides faster storage management.

MCC translates function M-files into
equivalent functions in the C language. These
functions are then processed by the C compiler
for a particular machine to produce either MEX-
files for use in MA T L A B or external functions for
use in other programs outside of MA T L A B.

The distinguishing feature of MATLAB as a
programming language is its extensive collection
of operations and functions involving matrices.
The matrix, a two-dimensional rectangular array
of real or complex numbers, is the language’s

only data type. There are no declarations, dimension
statements, or separate storage allocation statements. Sizes are
determined automatically and dynamically from context. It is
impossible to get an error message from MA T L A B saying that a
particular use of a variable is inconsistent with its declaration.
The C language, on the other hand, has types and declarations.
It is important to distinguish between integers, floating point
values, and characters, and between scalars and arrays.

MCC’s most significant feature, one which took us two years
to perfect, is its type inference capability. This involves the
detection of various instances of general matrices that can be
represented in less space and processed in less time. For
example, it is easy to translate the MA T L A B f o r statement 

for i = 1:n

into the equivalent C. The tricky part is recognizing that the C
program can declare i to be an integer.

int i;
for (i = 1; i <= n; i++)

The declaration is possible in this particular situation because
both the starting value and the increment of the f o r loop are
one, so the i takes on integer values. (Note that it is not possible
to infer from the f o r statement by itself that n is an integer.)

It is important to realize that compilation will not
substantially speed up any function that spends most of its time
in the built-in indexing, math, and graphics functions of
MA T L A B. A useful rule-of-thumb is that the execution time of a
MA T L A B function is proportional to the number of statements
executed, no matter what those statements actually do. This is
clearly a very rough approximation, but it serves to emphasize
the point that the only reason to compile many functions is to
encapsulate the code, not to speed them up.

The functions that profit most from compilation involve
nested f o r loops driving a body of substantially scalar code.
Our first example involves a function which solves a tridiagonal
system of linear equations

b1x1 + c1x2 = d1
a1x1 + b2x2 + c2x3 = d2
a2x2 + b3x3 + c3x4 = d3

…
an - 1xn - 1 + bnxn = dn

The input consists of four vectors, a, b, c and d, which
specify the diagonal, superdiagonal, and subdiagonal of a
tridiagonal matrix, together with the right hand side of the
linear system. The output is another vector, x, the solution to
the system. Both the execution time and the storage
requirements should be proportional to the number of
unknowns, n. It is very inefficient to use a full matrix
representation because the storage requirements would be
proportional to n2 and the execution time proportional to n3.

function x = tridi(a,b,c,d)
% TRIDI(a,b,c,d) solves Tx = d where
% T = diag(a,-1) + diag(b,0) + diag(c,1) 
n = length(b);
x = zeros(n,1);
for k = 1:n-1

p = a(k)/b(k);
b(k+1) = b(k+1) - p*c(k);
d(k+1) = d(k+1) - p*d(k);

end
x(n) = d(n)/b(n);
for k = n-1:-1:1

x(k) = (d(k) - c(k)*x(k+1))/b(k);
end
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A sparse matrix representation has the proper storage and time
complexity, but is not tuned to the tridiagonal special case. 

The function shown in the box handles the most frequent
situation, where it is known a priori that pivoting is not required
because the matrix is diagonally dominant or positive defin i t e .
Even though this is a computation involving vectors, it cannot
be “vectorized.” The individual components must be modifie d
or computed one at a time, using components computed in the
previous step.

In our timing experiments, we used a 75 MHz P e n t i u m
laptop and varied the problem size, n. We measured the
execution time of both t r i d i . m and the MEX-file produced by
M C C . Theoretically, these times should be linear functions of n,
because each operation is done either once or n times. Least
squares fits to the measured values show this linear model is
s a t i s f a c t o r y .

Compilation of t r i d i speeds it up considerably. The dots
on the top graph are the ratios of the actual execution times.
The curve is the ratio of the two linear fits. We see a speedup of
over two orders of magnitude for systems with more than about
50 unknowns. In fact, on this particular computer, the
asymptomatic speedup, which is the limiting value of the
quotient as n approaches infinity, is over 250. Comparable
results are obtained on other machines.

The t r i d i example clearly shows MCC performance at its
best. It is not a toy example, and speedups by two orders of

magnitude can be expected from other functions that involve
long loops around scalar operations.

Our second example involves a different kind of
computation. A function function is a MA T L A B function whose
primary argument is the name of another function. Zero
finders, minimizers, quadrature routines, and ordinary
differential equation solvers all fall into this category. Our
simplest differential equation solver, o d e 2 3, is already available
as a hand-written M E X- file on some machines, but this
experiment involves comparison with the original M-file. 

The differential equation is a pair of nonlinear, second-order
equations describing the restricted three-body problem, which
models the orbit of a body, say, a satellite, under gravitational
attraction from two much heavier bodies, say, the earth and the
moon. With properly chosen initial conditions, the orbit is
periodic. The satellite starts out on the far side of the moon,
passes near the earth, continues in a big loop on the opposite
side of the earth from the moon, passes near the earth again,
and returns to its starting position and velocity. The graph of
the orbit at the beginning of the column shows the steps
required to obtain a certain accuracy. You can see that it is very
important to have a variable step size, automatically chosen, for
this problem.

One of the optional parameters for o d e 2 3 is the tolerance or
required accuracy. Since o d e 2 3 employs a third-order formula,
the number of steps taken and resulting execution time is
roughly proportional to the cube root of the tolerance.

The differential equation is defined in a separate M-fil e ,
o r b i t . m. Its name is passed as a parameter to o d e 2 3.

[t,y] = ode23('orbit',0,tfin a l , y 0 , t o l ) ;

One of the most time-consuming portions of the interpreted
computation involves the processing of the string ' o r b i t ' a n d
the call to the corresponding M-file. MCC provides a
mechanism for compiling the two M-files, o d e 2 3 and o r b i t,
into a single MEX-file with a very efficient link between the two
functions. The lower graph shows the resulting speedup as a
function of varying tolerance. The compiled program runs
between 12 and 18 times faster than the interpreted program.
This is not as spectacular as our first example, but is certainly
w o r t h w h i l e .

How much speedup can be expected by compiling a
“typical” M-file? That’s impossible to answer—there is no
typical M-file in this context. As we have seen, some functions
speed up by factors of 18 or 250. Other functions, including
those that spend most of their time in built-in subfunctions, will
not speed up at all. Your own mileage will certainly vary—
possibly by a couple of orders of magnitude.  ■
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