
Model-Based Design for
Medical Device Development

WHITE PAPER

 2

Whether you are an embedded software developer or a medical device engineer, this white paper
will introduce you to the best practices for designing software for medical devices, from

requirements management through design, implementation, and integration to verification and test-
ing. You will learn how to produce higher-quality software while reducing design errors and develop-
ment time.

Imagine that your team is developing controls for the actu-
ation part of a surgical robotic system. The system is
driven by electric motors with controls for haptic feedback.
Before you begin the design, you want to resolve some key
questions—for example:

• How do we size the motors for optimal
power and precision?

• Can we incorporate late-stage requirement
changes without project delay?

• How can we test the design at the system
level before integration?

• Does our design process comply with medical standards such as IEC 62304?

If your team is using handwritten code and document-based requirements, the only way to answer
these questions is through trial and error or testing on a physical prototype. This is the case whether
the application is a surgical instrument, a ventilator, an infusion pump, or a dialysis machine. If a
single requirement changes, the entire system might need to be recoded and tested, delaying the proj-
ect by weeks or even months.

Instead of handwritten code and documents, your team can create a system model using Model-Based
Design with MATLAB® and Simulink®. In the case of the surgical robotic system, the model would
comprise the robotic arms, motors, and control unit. You can simulate the model at any point to get
an instant view of system behavior and to test out multiple what-if scenarios without risk, delay, or
reliance on costly hardware. The design can then be integrated into the final hardware—all within an
IEC 62304-compliant development process.

This white paper introduces Model-Based Design for medical device development and provides tips
and best practices for getting started. Using real-world examples, it shows how teams that have adopt-
ed Model-Based Design to reduce development time, minimize integration issues, and deliver safety-
critical products while complying with medical device regulations and standards.

“Model-Based Design enabled our small product development team to develop and
demonstrate telerobotic capabilities in just four months, reducing costs and develop-
ment time.”

— Per Bergman, Corindus

Corindus CorPath GRX
Surgical Robotic System.

 3

I. What Is Model-Based Design?
The best way to understand Model-Based Design is to see it in action, using the design of a mechani-
cal ventilator as an example.

Mechanical ventilator model in Simulink and Simscape.

A team of medical device engineers sets out to build a control unit for the valves that regulate the
flow, volume delivery, and inspiratory and expiratory functions on a mechanical ventilator. Because
the engineers are using Model-Based Design, they begin by building an architecture model from the
system requirements.

The team then develops a model of the ventilator that includes tubes, valves, and a humidifier. This
high-level, low-fidelity model also includes the control algorithms that will be running in the control
unit, as well as a model of the plant—in this case, the patient attached to the ventilator.

The team performs initial system and integration tests by simulating this high-level model under var-
ious hospital and emergency scenarios to verify that the system is functioning correctly and that it
responds to different situations without risk to the patient.

To test the responsiveness of the ventilator, the team adds more detail to the simulation in the form of
an active patient. They continue testing and verifying the system-level behavior against the specifica-
tions. If the system is large and complex, the engineers can develop and test individual components
independently but still test them frequently in a full system simulation.

https://www.mathworks.com/matlabcentral/fileexchange/75012-medical-ventilator-model-in-simscape

 4

Ultimately, they build a refined model of the system and the conditions in which it operates. This
model captures knowledge about the system (the IP) accumulated from all the R&D efforts. The engi-
neers then generate code from the model of the control algorithms for software testing and verifica-
tion. They also generate all the documentation of unit and system-level tests needed for the regulatory
approval process.

Following hardware-in-the-loop tests with rapid prototyping, they implement the generated code on
production hardware to validate the operation of the ventilator.

You’ll see from this scenario that Model-Based Design uses the same elements as traditional develop-
ment workflows, but with two key differences:

• A system model is at the center of the development process, from requirements specification
through design, implementation, and testing.

• Many of the time-consuming and error-prone steps in the workflow—for example, writing
code, manual testing, and documentation—are automated.

Workflow for Model-Based Design.

Requirements Capture and Management

In a traditional workflow, where requirements are captured in documents, handoff can lead to errors
and delay. Often, the engineers creating the design documents or requirements are different from the
ones who design the system. Requirements may be “thrown over a wall,” meaning there is no clear or
consistent communication between the two teams.

Models and Simulation

DESIGN

C, C++

IMPLEMENTATION

TEST A
N

D
 V

ERIFIC
A

TIO
N

RESEARCH REQUIREMENTS

INTEGRATION

VDHL, Verilog CUDA

MCU CPU FPGA ASIC GPU

 5

In Model-Based Design, you author, analyze, and manage requirements within your Simulink model.
You can create rich text requirements with custom attributes and link them to designs, code, and
tests. Requirements can also be imported and synchronized from external sources such as require-
ments management tools. When a requirement linked to the design changes, you receive automatic
notification. Furthermore, requirements can be traced all the way to generated code using traceability
matrices. As a result, you can directly assess how a change in requirements affects the model and the
code and take appropriate action.

Case Study: Corindus

Corindus has developed and deployed a robotic plat-
form that enables physicians to perform percutaneous
coronary intervention (PCI) or neurovascular intervention (NVI) on patients located hundreds to thousands of
miles away.

The platform is an extension of the company’s CorPath® GRX System, which allows physicians to operate on
patients from a radiation-shielded workstation in the catheterization lab. Corindus used Model-Based Design
with MATLAB and Simulink to create the system and to add support for real-time transmission of video and
control data.

For the original system, Corindus wanted to accelerate development by validating their robotic control design
through simulation before committing to hardware. They also wanted to verify the design via real-time simula-
tion and testing and implement it on an embedded microcontroller.

To add remote capabilities, the Corindus team needed to send fluoroscopy and hemodynamics video data
from the patient’s location to the physician in real time and send joystick and other control data back. To
incorporate telerobotic capabilities, they built a communication link that sends video data and control com-
mands between the remote and local sites via two Speedgoat target computers running Simulink Real-Time™.

The first in-human, long-distance telerobotic-assisted PCIs were performed by Dr. Tejas Patel, who completed
five successful procedures over two days on patients located 32 km away at the Apex Heart Institute in
Ahmedabad, India.

“Model-Based Design is essential to
our ability to innovate because it
lets us develop new capabilities
and deploy them quickly. We can
rapidly build a prototype, show
that it meets requirements, and
then perfect it as we move into the
product development phase.”

— Doug Teany,
 Chief Operating Officer, Corindus

Corindus bedside unit with extended-reach
arm and touchscreen.

https://www.mathworks.com/company/user_stories/corindus-platform-enables-first-in-human-telerobotic-coronary-intervention.html

 6

Design

In a traditional approach, every design idea must be tested on a physical prototype. As a result, only a
limited number of design ideas and scenarios can be explored because each test adds to the project
development time and cost.

In Model-Based Design, the number of ideas that can be explored is virtually limitless. Requirements,
system components, IP, and test scenarios are all captured in your model, and because the model can
be simulated, you can investigate design problems and questions long before building expensive hard-
ware. You can quickly evaluate multiple design ideas, explore design tradeoffs, and see how each
design change affects the system.

Case Study: Weinmann

The MEDUMAT Transport ventilator moves a mixture of
oxygen and air into and out of the lungs of patients who
require breathing support. It is designed for use in emergency care and during transport for intrahospital or
interhospital transfers.

MEDUMAT Transport has a variety of sensors to measure pressure, flow, temperature, and molar mass (used
to measure oxygen concentration). These sensors, combined with advanced pneumatics and electromagnetic
valves, make MEDUMAT Transport the most advanced—and the most complex—ventilator that Weinmann has
ever developed. To find the optimal algorithms for this system, the engineers needed to evaluate numerous
design alternatives.

Weinmann engineers recognized that their traditional process, in which embedded software was handwritten,
was not feasible for this project.

To overcome the challenge, they developed a plant model, which included hardware components as well as
a mechanical model of human lungs. The team also modeled the controller and its state machines, including
one state machine that tracks standby, startup, shutdown, and other operating modes and a second that man-
ages the entire ventilation process. The system-level controller model served as the top level in a hierarchy of
subsystems supporting the fundamental requirement for a modular software design and architecture.

After running closed-loop simulations of the controller and plant, the team generated production code for the
control system and the sensor signal processing subsystem. They deployed the code to Infineon® and Texas
Instruments™ MCUs, respectively, and performed unit tests on each subsystem within the model.

 “Model-Based Design with
MATLAB and Simulink enabled us
to handle the increased complexity
and was instrumental in our
achieving compliance certification.
Working with models instead of
handwritten code makes the
embedded software easier to
maintain and reuse and helps us
explain the technology to a certifi-
cation authority.”

— Dr. Florian Dietz, Weinmann

The MEDUMAT Transport ventilator.
Image © Weinmann Medical Technology.

https://www.mathworks.com/company/user_stories/weinmann-develops-life-saving-transport-ventilator-using-model-based-design.html

 7

Code Generation

In a traditional workflow, embedded code must be written manually from system models or from
scratch. Software engineers write control algorithms based on specifications written by control sys-
tems engineers. Each step in this process—writing the specification, coding the algorithms, and
debugging the handwritten code—can be both time-consuming and error-prone.

With Model-Based Design, instead of writing thousands of lines of code by hand, you generate code
directly from your model. Handwritten coding errors are eliminated, and the model acts as a bridge
between the control systems engineers and the software engineers. The generated code can be used
for prototyping or production. It can be optimized for specific processor architectures and integrated
with handwritten legacy code.

Case Study: World of Medicine

Laparoscopy and other minimally invasive procedures
must be performed within tightly confined spaces in the
abdomen. To increase freedom of movement for surgical
instruments, insufflators are used to expand the body cavity by blowing CO2 gas into it. WOM, a market
leader in insufflator and pump technologies for laparoscopy and hysteroscopy, uses Model-Based Design to
accelerate the development of high-quality insufflator control software.

On similar projects in the past, WOM engineers used a traditional development workflow that involved
hand-writing code. This approach made it difficult to identify and correct design and coding errors until late
in the process, delaying software delivery.

For the new insufflator, WOM engineers moved to Model-Based Design. They used measured input-output
data to create a nonlinear mathematical model of the abdominal cavity and incorporated this model into a
plant model that included pressure sensors, actuators, and other hardware components.

Next, they developed a control model with two cascaded proportional integral (PI) controllers, one for flow
and one for pressure. The team verified control functionality by running closed-loop simulations of the control
model with the plant model.

To verify the real-time performance of the design, they generated C code from their control model and
deployed it to real-time hardware connected to sensors and actuators in a prototype insufflator. After refining
the design based on customer input, the team generated production code for the target Arm® Cortex-M®
processor.

Following comprehensive integration tests and system-level tests, WOM received approval from the FDA and
European regulatory authorities for the new insufflator, which is now in production and in clinical use.

“Simulink enabled us to produce a
stable control system in a short
time. We modeled the entire
system, including a state machine
and cascaded PI controls. We
refined this model to improve
robustness and response times,
then verified it with rapid control
prototyping and generated embed-
ded code.”

— René Pätznick, WOM

A 50L insufflator from WOM.

https://www.mathworks.com/company/user_stories/wom-reduces-time-to-market-for-surgical-device-control-software-with-model-based-design.html

 8

Test and Verification

In a traditional development workflow, test and verification typically do not begin until the applica-
tion is complete, making it difficult to identify and correct errors introduced during the design and
coding phases.

In Model-Based Design, test and verification happen throughout the development cycle, from the
moment you start modeling requirements and specifications to the moment when the completed
design is ready for integration. Although you are testing more often and more thoroughly, you are
also saving time, because you can prove that your design meets requirements: with the requirements
captured in your model, you can verify and trace them to the design, tests, and code. You can auto-
matically generate tests, create test reports, and check compliance with coding standards and guide-
lines using static analysis and formal methods.

Case Study: ITK Engineering

Sensorless brushless DC (BLDC) motors operate with less abrasion than brushed motors and are more reli-
able, quieter, and easier to maintain and sterilize. Compared with BLDC motors with sensors, sensorless BLDC
motors are less expensive and more compact. However, the complex algorithms needed for sensorless control
require much more engineering effort to develop.

ITK engineers needed to design and optimize a rotor position estimator, as well as a sophisticated cascade
control for the dental drill motor that would comply with the IEC 62304 standard for medical device software.

When the project began, a prototype motor was unavailable. To meet their client’s project deadline, ITK had
to develop the controller software in parallel with the motor hardware.

ITK engineers designed, optimized, implemented, and tested the sensorless BLDC motor controller with Model-
Based Design. Working from data sheets for existing motors and information provided by their client, the
engineers modeled the BLDC motor, including its electrical and mechanical components, in Simulink.

After converting their floating-point controller design to fixed point, they reran simulations to verify the fixed-
point model. The team also developed MATLAB scripts that performed batch unit testing of individual model
components.

The controller and sensorless BLDC motor are currently in series production in dental drills.

“Our plant model accurately reflect-
ed motor behavior, which enabled
us to verify our controller and the
hardware early in development.
We quickly identified the root
cause of an error on the first hard-
ware prototype.”

— Alexander Reiss, ITK Engineering
Dental drills featuring ITK Engineering’s

sensorless brushless motor control.

https://www.mathworks.com/company/user_stories/itk-engineering-develops-iec-62304compliant-controller-for-dental-drill-motor-with-model-based-design.html

 9

II. Getting Started
While you and your team might see the benefits of moving to Model-Based Design, you might also be
concerned about the risks and challenges—organizational, logistical, and technical—that could be
involved. This section addresses questions frequently asked by engineering teams considering adopt-
ing Model-Based Design and provides tips and best practices that have helped these teams manage
the transition.

Q. How are engineering roles affected by the introduction of Model-Based Design?
A. Model-Based Design does not replace engineering expertise in control design and software archi-
tecture. With Model-Based Design, control engineers’ roles expand from providing paper require-
ments to providing executable requirements in the form of models and code. Software engineers
spend less time hand-writing application software and more time on modeling architecture; coding
OS, device driver, and other platform software; and performing system integration. Both control and
software engineers influence the system-level design from the earliest stages of the development
process.

Q. What happens to our existing code when we move to Model-Based Design?
A. It can become part of the design; your system model can contain both intrinsically modeled and
legacy components. This means that you can phase in legacy components while continuing to per-
form system simulation, verification, and code generation.

Q. Is there a recommended way to adopt Model-Based Design?
A. Trying new approaches and design tools carries an element of risk. Successful teams have mitigat-
ed this risk by introducing Model-Based Design gradually, taking focused steps that can help a project
along without slowing it down. Organizations of all sizes begin their initial adoption of Model-Based
Design at the small group level. They usually start with a single project that will provide a quick win
and build on that early success. After gaining experience, they roll out Model-Based Design at the
department level so that models become central to all the group’s embedded systems development.

Q. Is Model-Based Design compliant with IEC 62304 software development process?
A. You can develop IEC 62304-compliant embedded software for medical devices with Model-Based
Design. Model-Based Design incorporates verification and validation into the workflow, which
ensures that the software is comprehensively tested and verified before integrating it into a medical
device. In addition, parts of the documentation required by IEC 62304 are automatically generated for
regulatory compliance. Most Simulink tools used in Model-Based Design have been TÜV SÜV certi-
fied for IEC 62304 compliant development workflow.

 1 0

These four best practices have worked well for many teams:

• Experiment with a small piece of the project. A good way to start is to select a new area of
the embedded system, build a model of the software behavior, and generate code from the
model. A team member can make this small change with a minimal investment in learning
new tools and techniques. You can use the results to demonstrate some key benefits of
Model-Based Design:

• High-quality code can be created without manual coding.

• The code matches the behavior of the model.

• By simulating a model, you can work out the bugs in the algorithms much more simply
and with greater insights than by dynamically testing C code on the desktop.

• Build on your initial modeling success by adding system-level simulation. As previous sec-
tions of this paper have shown, you can use system simulation to validate requirements,
investigate design questions, and conduct early test and verification. The system model does
not need to be high-fidelity; it just needs to have enough detail to ensure that interfacing sig-
nals have the right units and are connected to the right channels and that the dynamic behav-
ior of the system is captured. The simulation results give you an early view of how the plant
and controller will behave.

• Use models to solve specific design problems. Your team can gain targeted benefits even
without developing full-scale models of the plant, environment, and algorithm. For example,
suppose your team needs to select parameters for a solenoid used for actuation. They can
develop a simple model that draws a conceptual “control volume” around the solenoid,
including what drives it and what it acts upon. The team can test various extreme operating
conditions and derive the basic parameters without having to derive the equations. This
model can then be stored for use on a different design problem or in a future project.

• Begin with the core elements of Model-Based Design. The immediate benefits of Model-
Based Design include the ability to create component and system models, use simulations to
test and validate designs, and generate C code automatically for prototyping and testing.
Later, you can consider advanced tools and practices and introduce modeling guidelines,
automated compliance checking, requirements traceability, and software build automation.

 1 1

Case Study: Khawaja Medical Technology

Electrocardiogram (ECG) data analysis is essential for the
recognition and treatment of cardiac diseases. It is
applied in a variety of diagnostic settings, including preclinical, clinical, ambulatory, and in-home settings, as
well as in clinical trials of new drugs.

As part of its cardiac drug development and approval process, a pharmaceutical company must investigate
the new drug’s effect on the heart. This involves analyzing ECG signals to identify abnormalities and ensure
cardiac drug safety.

Engineers at Khawaja Medical Technology have developed novel and advanced algorithms that fully auto-
mate ECG signal analysis. The algorithms enable real-time monitoring and analysis of ECG signals from a
subject who is resting, exercising, or wearing a Holter monitor. The engineering team used Model-Based
Design with MATLAB and Simulink to develop and deploy algorithms for automated ECG analysis.

Using Simulink Check™, the team checked their models for compliance with modeling guidelines and stan-
dards, including IEC 62304. They authored and executed simulation-based tests with Simulink Test™, traced
the tests to requirements, and measured test coverage with Simulink Coverage™.

They also developed a set of MATLAB classes, which they used to create reusable System objects™ for the
signal processing and classification layer. These System objects perform a variety of tasks, such as detecting
peaks in ECG signals, measuring signal characteristics, classifying arrhythmias, and diagnosing ventricular
hypertrophy, myocardial infarction, and other heart conditions.

Leveraging these tools, Khawaja Medical Technology was able to reduce development time by 40%, acceler-
ate compliance with ISO 13485 and IEC 62304, and build a prototype in months instead of years.

“We’ve seen a significant return on
the investment we made in Model-
Based Design, including higher
quality, reduced development
times, and faster ISO and IEC
certification.”

— Dr. Antoun Khawaja,
 Khawaja Medical Technology

ECG signal analysis algorithms modeled in
Simulink.

https://www.mathworks.com/company/user_stories/khawaja-medical-technology-achieves-iec-62304-compliance-for-ecg-analysis-software.html?s_tid=srchtitle_Khawaja%20Medical%20Technology_1

 1 2

Tools for Model-Based Design

Foundation Products

MATLAB

Analyze data, develop algorithms, and create mathematical models

Simulink

Model and simulate embedded systems

Requirements Capture and Management

Simulink Requirements

Author, manage, and trace requirements to models, generated code, and test cases

System Composer

Design and analyze system and software architectures

Design

Simulink Control Design

Linearize models and design control systems

Stateflow

Model and simulate decision logic using state machines and flow charts

Simscape

Model and simulate multidomain physical systems

Code Generation

Simulink Coder

Generate C and C++ code from Simulink and Stateflow models

Embedded Coder

Generate C and C++ code optimized for embedded systems

HDL Coder

Generate VHDL® and Verilog® code for FPGA and ASIC designs

GPU Coder

Generate CUDA code for NVIDIA GPUs

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink-requirements.html
https://www.mathworks.com/products/system-composer.html
https://www.mathworks.com/products/simcontrol.html
https://www.mathworks.com/products/stateflow.html
https://www.mathworks.com/products/simscape.html
https://www.mathworks.com/products/simulink-coder.html
https://www.mathworks.com/products/embedded-coder.html
https://www.mathworks.com/products/hdl-coder.html
https://www.mathworks.com/products/gpu-coder.html?s_tid=srchtitle_GPU%20Coder_1

 1 3

© 2022 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

5/22

Test and Verification

Simulink Test

Develop, manage, and execute simulation-based tests

Simulink Check

Measure design quality, track verification activities, and verify compliance with standards

Simulink Coverage

Measure test coverage in models and generated code

Polyspace® Products

Prove the absence of critical run-time errors in C/C++ code

Simulink Design Verifier

Identify design errors, prove requirements compliance, and generate tests

IEC Certification Kit

Qualify code generation and verification tools for IEC 62304 certification

Learn More
These resources will help your team ramp up quickly with Model-Based Design.

Interactive Tutorials
MATLAB Onramp

Simulink Onramp

Stateflow Onramp

Simscape Onramp

Videos
What Is Simulink? (2:15)

Model-Based Design with MATLAB and Simulink (2:08)

Getting Started with Simulink for Controls (11:30)

Onsite or Self-Paced Training Courses
MATLAB Fundamentals

Simulink for System and Algorithm Modeling

Control System Design with MATLAB and Simulink

Additional Resources
Consulting Services

MATLAB and Simulink for Medical Devices

https://www.mathworks.com/products/simulink-test.html
https://www.mathworks.com/products/simulink-check.html
https://www.mathworks.com/products/simulink-coverage.html
https://www.mathworks.com/products/polyspace.html
https://www.mathworks.com/products/simulink-design-verifier.html
https://www.mathworks.com/products/iec-61508.html
https://www.mathworks.com/learn/tutorials/matlab-onramp.html
https://www.mathworks.com/learn/tutorials/simulink-onramp.html
https://www.mathworks.com/learn/tutorials/stateflow-onramp.html
https://www.mathworks.com/help/physmod/simscape/ref/simscapeonramp.html?searchHighlight=simscape%20onramp&s_tid=srchtitle_simscape%20onramp_1
https://www.mathworks.com/videos/simulink-overview-61216.html
https://www.mathworks.com/videos/model-based-design-with-matlab-and-simulink-69040.html
https://www.mathworks.com/videos/getting-started-with-simulink-69027.html
https://www.mathworks.com/training-schedule/matlab-fundamentals.html
https://www.mathworks.com/training-schedule/simulink-for-system-and-algorithm-modeling.html
https://www.mathworks.com/training-schedule/control-system-design-with-matlab-and-simulink.html
https://www.mathworks.com/services/consulting/proven-solutions.html
https://www.mathworks.com/solutions/medical-devices.html

