Quantcast

Documentation Center

  • Trial Software
  • Product Updates

radsimp

Simplify radicals in arithmetical expressions

Use only in the MuPAD Notebook Interface.

This functionality does not run in MATLAB.

Syntax

radsimp(z)

Description

radsimp(z) tries to simplify the radicals in the expression z. The result is mathematically equivalent to z.

radsimp and simplifyRadical are equivalent.

Examples

Example 1

Simplify these constant expressions with square roots and higher order radicals:

radsimp(3*sqrt(7)/(sqrt(7) - 2)),
radsimp(sqrt(5 + 2*sqrt(6)));
radsimp(sqrt(5*sqrt(3) + 6*sqrt(2))),
radsimp(sqrt(3 + 2*sqrt(2)))

radsimp((1/2 + 1/4*3^(1/2))^(1/2))

radsimp((5^(1/3) - 4^(1/3))^(1/2))

radsimp(sqrt(3*sqrt(3 + 2*sqrt(5 - 12*sqrt(3 - 2*sqrt(2))))
             + 14))

radsimp(2*2^(1/4) + 2^(3/4) - (6*2^(1/2) + 8)^(1/2))

radsimp(sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3))
             - sqrt(10 + 6*sqrt(3)))

Example 2

Create the following expression and then simplify it using radsimp:

x := sqrt(3)*I/2 + 1/2: y := x^(1/3) + x^(-1/3): z := y^3 - 3*y

radsimp(z)

delete x, y, z:

Example 3

Use radsimp to simplify these arithmetical expressions containing variables:

z := x/(sqrt(3) - 1) - x/2

radsimp(z) = expand(radsimp(z))

delete z:

Example 4

Use radsimp to simplify nested radicals. When simplifying nested radicals, radsimp tries to reduce the nesting depth:

radsimp((6*2^(1/2) + 8)^(1/2));
radsimp(((32/5)^(1/5) - (27/5)^(1/5))^(1/3));
radsimp(sqrt((3+2^(1/3))^(1/2) * (4-2^(1/3))^(1/2)))

Parameters

z

An arithmetical expression

Return Values

Arithmetical expression.

References

Borodin A., Fagin R., Hopcroft J.E., and Tompa M.: Decreasing the Nesting Depth of Expressions Involving Square Roots, JSC 1, 1985, pp. 169-188.

See Also

MuPAD Functions

More About

Was this topic helpful?